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Abstract. Unbiased consistent estimators of the mean and variance of a correlated 
sequence { x ( f k ) } ,  k = 1 , 2 , .  . . , n, are derived. The sequence is obtained by Poisson 
sampling a random process x ( r )  with a known covariance function. The variances of the 
estimators are obtained, Finally, the application of the results to laser anemometry is 
discussed. 

1. introduction 

There has been a considerable interest in the statistics of point processes. Beutler and 
Leneman (1966) have obtained expressions for the spectrum of a Poisson-sampled 
process. However, they did not consider the sampling distribution of the spectrum. 

In this paper, the unbiased mean and variance estimators of a correlated sequence 
{ x ( t k ) } ,  k = 1,2, . . . , n, are derived. The continuous process x ( t )  is assumed to have a 
known covariance function (CF) and the sampling to be Poisson, i.e. the number of 
samples in a fixed time is Poisson distributed with rate v. Three specific CFS are 
considered-exp( - a IT[), exp( - a 171) COS(OT) and exp( - AT*). 

The variances of the mean estimators are obtained without any assumptions 
regarding the statistics of x ( t ) .  In order to evaluate the variance of the variance 
estimators, Gaussian statistics for x ( t )  have been assumed. The results for the CF 
exp( - a 1 ~ [ )  COS(WT) can be obtained directly from the exponentially decaying CF 

exp(-cu(Tl). Hence, only the CF exp(-a)T[) is discussed in detail. Formulae are 
obtained for the limiting cases when the number of samples n is large. Although the 
form of the variances of the estimators for the Gaussian CF exp(-hT2) are similar to 
those for the CF exp(-cu(T)), the results cannot be derived analytically, except in the 
limiting case of large n for the mean value estimator. With the aid of a recurrence 
formula, however, numerical results can easily be obtained. 

A possible area of application of these results is in laser anemometry which is a 
widely used non-contact method of fluid flow measurement. In this technique laser 
light is focused into the flow region and a signal is obtained from light scattered by 
minute particles suspended in the fluid. These particles are either naturally present or 

11 Requests for reprints should be addressed to C A Greated. 
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artificially seeded and are generally so small that they can be assumed to follow 
faithfully the fluid motions. The scattered light is observed with a photodetector and 
the resulting electronic output is converted to a velocity record by means of an 
electronic processing system. Full details of these techniques are given by Durrani and 
Greated (1977). The random-sampling problem arises since in many practical situa- 
tions, particularly in the measurement of air flows, the particles are widely dispersed 
within the fluid. In this case the photodetector signal and the resulting velocity record is 
in the form of a discrete series of pulses, each pulse arising when a particle passes across 
the measuring region. 

In contrast to laser anemometry the more conventional measuring technique known 
as hot-wire anemometry gives rise to a continuous velocity record and hence the 
random-sampling problem does not arise. It is worth pointing out, however, that the 
laser methods have a number of fundamental advantages over hot-wire anemometry. 
These are fully described in the literature (Durrani and Greated 1977). In 0 6 we have 
compared the errors arising in random sampling with those obtained when a continuous 
record is employed. It is intuitively obvious that for a given sample time the errors are 
greater with a random sample and that the errors become equivalent in the limiting 
case of infinitely high sample rate. 

The scattering particles in laser anemometry are randomly dispersed within the fluid. 
Hence if a vanishingly small sample volume is chosen within the flow region, the 
probability of finding a scattering centre within this volume at a given instant will be a 
constant, independent of the spatial position, and this probability will also be vanish- 
ingly small. This is the spatial equivalent to the shot noise process. Our results are 
applicable to flows where there are small random velocity fluctuations superimposed on 
a constant mean velocity. In this situation it is seen that the temporal distribution of 
point velocity readings, as well as the spatial distribution of particles within the flow 
region, will be Poisson to a good approximation. If velocity fluctuations are excessively 
large then bunching effects occur (McLaughlin and Tiederman 1973). 

2. Poisson sampling 

If the number of samples in a fixed time has a Poisson distribution, then the interval ( 7 )  

between adjacent samples has an exponential probability density and the probability 
density of any two non-overlapping intervals is independent. The probability density of 
7 is 

v exp( - w) 7 2 0  

7 € 0  

where v is the rate parameter of the Poisson distribution. From this it follows that the 
probability density of the interval between any two samples x ( t m )  and x (t,,,+") separated 
by n independent intervals is 

+m 

P n ( 7 ) = 1  P(u)Pn-l(T-u) du = P(u)Pn-l(T-u) du 
(2.2) 

i.e. p , ( ~ ) ,  n 2 2 ,  is obtained by successively convolvingp(7) with itself (n - 1) times. This 

-m lb 
~ 1 ( 7 ) 3 ~ ( 7 )  
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leads to 

exp( - v r )  7 8 0  
(2.3) 

The CF of the sampled process { x ( t k ) }  is given by 

C(n)  = E[(x(t i )  -p)(x( t j )  

= E [ E [ ( x ( t i ) - p ) ( x ( t i ) - p ) ;  for fixed ti and ti]] (2.4) 

where p = E[x] ,  u2 = E[(x  -p ) ' ]  and n = li - j [ ;  the number of intervals between the 
samples x ( t i )  and x( t i ) .  E[ e ]  denotes expectation. In (2.4) the two expectations are 
with respect to x and the exponentially distributed random variable Iti - til. 

Consider a process x ( t )  with an exponentially decaying CF u2exp( -alrl), where 
u2 is the variance of x ( t )  and a >o. The CF of the sequence { x ( ? k ) }  can now be 
found using (2.4): 

C(n)  = E[U' exp(-a/r))] T > O  (2.5) 

where 171 = Iti - t i /  is the random variable. Using (2.3) and (2.5), 

exp( - v r )  W V"7n-1 

dr. ( n  - l)! C(n)  = u' I, exp( - ar) 

Then 

since the gamma function is defined as 
W 

T ( n + l ) = l o  4 " e x p ( - 4 ) d 4 = n !  ( n  is natural). 

By considering the exponentially decaying CF as Re{exp[ -(a +iw)1r1]}, (i = 4- l), 
the CF of the sampled sequence is simply 

C ( n )  =Re( v+(a+iw) " > '  
where Re denotes real part. For the Gaussian CF U' exp( -AT2), the covariance of the 
sequence now becomes 

From Gradshteyn and Rhysik (1966) 
W lo x"-l  exp(-px2-yx)dx 

(2.10) 
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Therefore 

(2.11) 

where D-,( t )  is a parabolic cylinder function and t = v/J(2A). 

3. Covariance function U* exp( - a 171) 
3.1. Mean estimate and its uariance 

We shall now consider the mean estimate 2 of the sequence of variables { x ( f j ) } ,  
i = 1, . . . , n. Representing x ( t i )  by xi ,  a reasonable estimate is 

2 = 2 x i / n .  (3.1) 
i = l  

Unless specified, all summations that follow will be from 1 to n.  Since we know a priori 
that E[x( t ) ]  = p, then, 

E [ 2 ]  = E [  x , / n ]  = 1 E[x i ] /n  = p. 
I i 

The variance of the unbiased mean estimator 2 is 

In appendix 1 it is shown that V ( 2 )  can be evaluated as 

(3.2) 

(3.3) 

(3.4) 

where U = v/(v +a). Since a < 1 ,  we can deduce that x* is a consistent estimator since 
V(x*)+O as n + m .  It should also be noticed that when the samples { x ( t k ) )  are 
independent, i.e. when a =0 ,  then V(x^)=u2/n .  This is the standard result for the 
variance of the mean of n independent samples. For large n, 

V (2 )  l + a  
u' /n I - a '  
-=- (3.5) 

Figure 1 shows V(x*)/u' plotted against n for various values of a. The full curves 
represent the values obtained from (3.4) whilst the broken curves indicate the approxi- 
mate values given by (3.5). The curves show the range of n for which (3.5) is valid; the 
full and broken curves being asymptotic at high n values. 

3.2. Variance estimator and its variance 
Now consider an unbiased variance estimator 

1 
N i  

U*=- c (x ,  -x*)2 (3.6) 

where N has to be determined such that E ( @  = U'. 
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Figure 1. Variation of the mean value estimator with the number of samples for covariance 
function g* exp(-- a ) ~ \ ) .  The full curves are plotted from (3.4) and the broken curves from 
(3.5). 

In appendix 2 it is shown that the condition for an unbiased estimation is that 

(3 .7)  
2a 

n(1-a)'  
N = n - 1 -  [ n ( l  - a )  +a" - 13 

and that the variance of this estimator is 

V(0)  =E[($  -a')'] = E($) -a4 

2 
N 2  

= -(I + 1' + I3) 

where 

( 3 . 8 ~ )  

(3 .8b)  

4 ,  
-E( 4 2a 2 

2a ' 
I l = a  n + -  [n ( l -a ' )+a '" -  

12- n n + - [ n ( ~ - a ) + a n - l ] )  ( 1  -a)' 

4( (1-a')' 

and 

When a =0, V ( 0 ) =  2 a 4 / ( n  - 1 )  which is the same as given by Hald (1952) for 
independent samples. It will be noticed that only Il contributes significantly to V(0)  for 
large n. A similar result to (3.5) can be obtained in this case for large n : 

V(0)  l + a 2  
1 - a 2' 

z- 
2 v 4 / ( n  - I )  (3.9) 
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This equation can be verified by considering V($)  in figure 2 for n = lo4  with a = 0 and 
a = 0.9. From the curves 

V(6, a = 0.9) 1.9 x 
= 10 - - v(c, a = 0) 2 x 10-~ 

1+(0*9)2 1.81 
1-(0*9)2 0.19 

(using (3.9)). - --t 

The full curves in figure 2 have been computed from (3.8) and the broken curves from 
(3.9). 

The variance estimator is consistent since V(6) approaches zero as n increases (see 
figure 2 and (3.9)). 

I . . , . I  . . , . I  . , \  

1 10 102 Id 
Number of samples n 

Figure 2. Variation of the variance estimator with the number of samples for covariance 
function U’ exp( - a / ~ l ) .  The full curves are plotted from (3.8) and the broken curves from 
(3.9). 

4. Covariance function (+* exp( -a 171) cos UT 

As indicated in § 2, all the results obtained in § 3 can be directly extended to the present 
CF. 

For example, using (3.4) the variance of the mean estimator is 

>I  2a 
[ n ( l  - a )  + an  - 11 (4.1) 

where a = v/[v +(a + iw)]. Similarly the variance of the variance estimator can be 
obtained. 

By setting a = 0, a periodic covariance function can be considered. 
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5. Covariance function u2 exp( -AT') 

In this case the variance of the estimators cannot be derived analytically; however, the 
required results can easily be obtained numerically. 

5.1. Variance of the mean estimator 

By comparing (2.11) with (2.7) we can see that a n  =z" exp ( . z ~ / ~ ) D - ~ ( Z ) .  Using this 
similarity and the results of 0 3.1 and appendix 1 the variance of the mean estimate is 
seen to be 

(5.1) 

The summation in (5.1) is convergent and the value of z'D-,(z) can be computed using 
the following recurrence relation: 

Care should be taken when using this recurrence formula because of the round-off 
errors in computation. A backward recurrence technique described in detail by 
Abramowitz and Stegun (1965) is used to avoid such errors. For values of r beyond a 
certain value k (dependent on z )  z kD-k ( z )  is approximately zero. We let z kD-k ( z )  and 
Z ~ + ' D - ( ~ + ~ ) ( Z )  be 1 and 0 respectively. Backward recurrence is then used until the 
value of Z D - ~ ( Z )  is obtained, which is then compared with the tabulated values in 
Abramowitz and Stegun (1965). The ratio of the tabulated to the computed value for 
r = 1 is obtained. Multiplication of all the computed values by this ratio gives the 
correct value for all r s k + 1. 

The full curves in figure 3 are for v(X^)/v2 against n for various values of z 
computed from (5.1). It should be noticed that the z = 0 curve corresponds to the 
independent-samples case and is the same as that obtained for a = 0 when considering 
the exponentially decaying correlation (see figure 1). 

For large n, V(X^)/u2 decreases linearly with n. The variance of the mean estimate as 
n approaches infinity can be obtained analytically. Rewriting (5.1) 

Using (2.10) we obtain 

O0 (xz>'-' X 2  1 zrD- , (z)  = exp( - -z2/4)1 2 1  - exp( - z x  -r> dx 
r r o ( r - l ) !  

and as n, the upper limit of the summation, approaches infinity 

1 (xz)r - l / ( r  - I)! =ex'. 
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I . , , . I  . . . I  . . , \ 
1 10 102 Id 

Number of samples n 

Figure 3. Variation of the mean value estimator with the number of samples for covariance 
function (r2 exp(-AT*). The full curves are plotted from (5.1) and the broken curves from 
(5.7a). 

Therefore 

Interchanging the order of summation and integration 

From Gradshteyn and Rhysik (1966) 

r(zx - zx exp(zx) + exp(zx) a s n + m .  Tw- 
Substituting ( 5 . 5 )  and (5.6) in (5.3) we find 

n n 

and after neglecting the l / n 2  term 

cr2 
n V(2) = -[1 +z(2.rr)”*]. 

( 5 . 5 )  

(5.6) 

( 5 . 7 ~ )  

(5.76) 

This relationship can be verified easily by considering the curves in figure 3. The broken 
curves in figure 3 have been computed from ( 5 . 7 ~ ) .  



Estimation of moments of Poisson -sampled random process 479 

5.2. Variance of the variance estimator 

The results of Q 3.2 can be simply extended to this covariance function. From (3.8b) 

(5 .8a)  

where 

I3 = n 1 A2(i )  (5.8d) 
I 

2 

A ( i )  = "[ 1 + exp(r2/4)( y' z'D-,(t)  + r = l  z 'D-.(Z)>] 
n r = l  

and 

(5.8e) 

~ = n - l - ( 2 / n ) e x p ( z ~ / 4 ) C  ( n - r ) z r D J z ) .  (589 
r 

As in 9 3.2, only I I  contributes significantly to V(5)  for large n. Hence, 

.(n +2n exp(z2/2) c ( z r ~ - , ( z ) ) ' ) .  (5.9) 
2u4 

V(u*)=--- 
(n - 1) r 

Z, ( z ' D - ~ ( z ) ) ~  converges very quickly to zero when z C 1, hence it is justifiable to retain 
only two terms of the summation, therefore 

(5.10) 

Figure 4 shows graphs of V(8)/u4 against n for different values of z .  The full curves 
have been computed from (5.8). F o r t  = 0.5 the broken curve has been computed from 
(5.10) whilst for z = 1 , 2 , 3  and 5 they have been evaluated from (5.9). 

2u4n V(G) =- 2[1 +2 exp(z2/2)(z2~21(z)  + z ' D ! ~ ( z ) ) ] .  
(n  - 1) 

6. Continuous averaging 

The results obtainable by continuous averaging (hot-wire anemometry) will be com- 
pared with those obtained by averaging a Poisson-sampled signal (laser anemometry). 
The Jatter has been discussed in the previous sections. The most commonly used model 
for the CF of the velocity is cr2 exp( -.IT/) and hence we shall only consider this one. 

The estimates of mean and variance respectively for continuous averaging are: 

x c = ~ j o  A I T  x(t) dt 

vc=pjo A I T  (x(t)-+joTx(t)dt) 2 dt 
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10-*t 

z 

lo3 

I \\\ ' t 
102 10 1 

Number of samples n 

Figure 4. Variation of the variance estimator with the number of samples for covariance 
function U* exp( - A T * ) .  The full curves are plotted from ( 5 . 8 ) .  The broken curves are 
plotted from (5.10) when z = 0.5 and from (5 .9)  when z = 1, 2, 3 and 5 .  

where x ( t )  is the continuous velocity record with length T. P is such that the variance 
estimator is unbiased. 

Using a procedure similar to that given by Bendat and Piersol (1971) we find the 
variance of these estimators for large T:  

2 "  2u2 
V(2,) =T I C(7) d7 = f $ f u 2  exp( - a ~ )  d7 =- 

0 Ta 

It can be shown that P = T - (2/a) ,  hence 

Although the variances of the estimators for the sampled process are higher than 
those for continuous averaging, it will be shown that the results of the former approach 
those of the latter as the rate of the Poisson process, v = n/T, approaches infinity. 

Rewriting (3.5) and using the definition of 'a' 

V ( Q = -  (6.3) 

From (3.9) 

2u4 l + a 2  2a4 v(;)=- -=- 
n 1 -u2  aT' 
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Appendix 1. Variance of the mean estimator for CF U* exp( - - ( Y I T I )  

The variance of the mean estimator x^ is 

By definition of variance 

E [ ( x ,  - P ) ~ ]  = C(0) = u2. 

Using (2.7) and (A.2) 

Letting a = v/(v +a) < 1 and removing the modulus sign we obtain 

In expanding (A.4a) we find exactly 2(n - r )  terms of a' where r = 1,2,  . , . , n - 1, 
therefore (A.3) becomes 

( '4 .5)  
r ) 

1 
n ~ ( 2 )  = ?( nu'+ 2u2 1 (n  - r)ar . 

Equation (3.4) then follows using the following results from Gradshteyn and Rhysik 
(1966): 

Appendix 2. 

a(1 - a " )  
r l - a  

r ) *  
1 -(n  + 1)a" +nu"+' 1 rar=a(  

Variance estimator and its variance for CF U* exp( - c u ~ T ~ )  

The expected value of the variance estimator is 

1 
N l  

E[U^]=-I  E [ ( x ~  -2)2] 

(A .7 )  
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Using (3.3) we obtain from (A.8) and (A.9) 

Employing (A.4)  and (A.5) we obtain 

=-(nu’- 1 u ’ - - ~  2u2 ( n  - r)ar).  
N n r  

(A.lO) 

(A. 11) 

For 6 to be unbiased E[C] = U’, hence 

2a 
[n( l -a)+a”-11.  (A.12) 

2 N = n - l - - C ( n  - r )a r  = n - 1 -  
n r  n(I-a)’ 

Using (A.5), N can be expressed as a function of V(x*), i.e. 

N = n - nV(x*)/u2 = n - V(x*)/(u’/n). (A.13) 

When the samples are independent it can be shown that N = n - 1, by putting a = 0 

The variance of the variance estimator may be written as 
in (A.l l)  or substituting V(2) = u 2 / n  in (A.13). 

V(  6 )  = E[  (6  - U’)’] = E[  6 ’1 - u4 * 
This can be simplified as follows: 

E[?j2I=E - - C ( X i  -f)2 =-E E[(& - Q 2 ( X j  -x*)’]. (A.14) K )’I ;2 , 
Assuming Gaussian statistics for x ,  and letting zi = x ,  -2, then z,  has zero mean and 

E [ r ? z 3  = E[zT]E[z:]+2E2[z,zj]. (A.15) 

It can be shown that Ci E[zf] = Nu2 .  Also, 

E[zizjl=E[(xi -P ) (x ,  -CL)] 

+ E [ ( x * - ~ ) ( x * - @ ) I - E [ ( x i  - C L ) ( X * - I L ) ] - E [ ( ~ ~ - ) ( L ) ( ~ * - @ ) ] .  (A.16) 
Let 

1 
A (i) = E[(xi - CL)($ - C L ) ]  = C E[(xi - @ ) ( x i  - P)I 

/ 

Then 
C A ( [ )  = nV(2) .  

1 

(A.17) 

(A. 18) 
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Substituting (A.17) in (A.16) gives 

Therefore 

Using (A.17) and simplifying: 

( A . 2 1 ~ )  

where 

II = 2 a4a2~i- j i ,  I* = n2  ~ ~ ( $ 1 ,  I3 = -2n 2 A?. (A.21b) 

Substituting (A.14), (A.15) and (A.21) into ( 3 . 8 ~ )  and employing (A.4), (3.4) and (A.6) 
then leads to the required result (3.8b). 

i i  i 
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